
29

sTube+: An IoT Communication Sharing Architecture

for Smart After-sales Maintenance in Buildings

CHUANG HU, Hong Kong Polytechnic University

WEI BAO, Sydney University

DAN WANG, Hong Kong Polytechnic University

YI QIAN, Nebraska Lincoln University

MUQIAO ZHENG, Guangdong Technology University

SHI WANG, Hong Kong Polytechnic University

Nowadays, manufacturers want to send the data of their products to the cloud so that they can conduct anal-

ysis and improve their operation, maintenance, and services. Manufacturers are looking for a self-contained

solution. This is because their products are deployed in a large number of different buildings, and it is neither

feasible for a vendor to negotiate with each building to use the building’s network (e.g., WiFi) nor practical

to establish its own network infrastructure. The vendor can rent a dedicated channel from an ISP to act as a

thing-to-cloud communication (TCC) link for each of its IoT devices. The readily available choices, e.g., 3G,

is over costly for most IoT devices. ISPs are developing cheaper choices for TCC links, yet we expect that

the number of choices for TCC links will be small as compared to hundreds or thousands of requirements on

different costs and data rates from IoT applications.

We address this issue by proposing a communication sharing architecture sTube+, sharing tube. The ob-

jective of sTube+ is to organize a greater number of IoT devices, with heterogeneous data communication

and cost requirements, to efficiently share fewer choices of TCC links and transmit their data to the cloud.

We take a design of centralized price optimization and distributed network control. More specifically, we

architect a layered architecture for data delivery, develop algorithms to optimize the overall monetary cost,

and prototype a fully functioning system of sTube+. We evaluate sTube+ by both experiments and simula-

tions. In addition, we develop a case study on smart maintenance of chillers and pumps, using sTube+ as the

underlying network architecture.

CCS Concepts: • Networks → Layering;

Additional Key Words and Phrases: IoT, communication architecture, smart building, thing-to-cloud

ACM Reference format:

Chuang Hu, Wei Bao, Dan Wang, Yi Qian, Muqiao Zheng, and Shi Wang. 2018. sTube+: An IoT Communi-

cation Sharing Architecture for Smart After-sales Maintenance in Buildings. ACM Trans. Sen. Netw. 14, 3–4,

Article 29 (November 2018), 29 pages.

https://doi.org/10.1145/3274283

Authors’ addresses: C. Hu, QT405, the Hong Kong Polytechnic University, Kwoloo, Hong Kong; email: cschu@comp.polyu.

edu.hk; W. Bao, Office 425 (West Wing), School of Information Technologies, Building J12, the University of Sydney, Sydney,

Australia; email: wei.bao@sydney.edu.au; D. Wang, PQ708, the Hong Kong Polytechnic University, Kwoloo, Hong Kong;

email: csdwang@comp.polyu.edu.hk; Y. Qian, PKI 206B Scott Campus (Omaha), University of Nebraska Lincoln; email:

yqian2@unl.edu; M. Zheng, A107, Qianhai Dream Workshop, No.1 qianwan road, Shenzheng, China; email: joe.zheng@

fusquare.com; S. Wang, QT415, the Hong Kong Polytechnic University, Kwoloo, Hong Kong; email: winona.wang@

connect.polyu.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1550-4859/2018/11-ART29 $15.00

https://doi.org/10.1145/3274283

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

https://doi.org/10.1145/3274283
mailto:permissions@acm.org
https://doi.org/10.1145/3274283

29:2 C. Hu et al.

1 INTRODUCTION

One important value proposition of the Internet of Things (IoT) is the data generated by the IoT
devices (a.k.a., things) [26]. When sending such data to the cloud, with state-of-the-art data mining
techniques and the computational power of the cloud, the adding value can be significant [30].
For example, it has been shown that big building data (e.g., carbon dioxide (CO2) data from the
heating, ventilation, and air conditioning (HVAC) systems) can be exploited to predict traffic status
of nearby roads [36]. Smart After-sales Maintenance and Services (SAMS), which will become the
case study of this article, is another example. Manufacturers of air conditioners, pumps, elevators,
and the like, are now transforming their machinery into smart machinery. When sending the data
of their products to the cloud, SAMS can operate in a trouble-preventing mode instead of trouble-
shooting mode. This can substantially improve the quality and reduce the cost of the product
maintenance. Moreover, manufacturers can learn the usage patterns of their customers. Thus, they
can recommend other products and develop top-up services based on such knowledge [22].

To fully realize the aforementioned applications, the things should be accessible anywhere and
anytime. One key question remains to be answered: how can we transmit the data from the things
to the cloud in an easy-to-use and cost-effective way?

The vendor may develop a WiFi network for the IoT application. However, WiFi needs additional
infrastructure, e.g., a gateway that finally relays data to the cloud. This is not suitable for SAMS.
For example, a vendor would like to monitor all its air conditioners in a region, installed in a
large number of buildings. The WiFi choice needs deployment of WiFi networks on a building-by-
building basis. In other words, the vendor is developing a separated network infrastructure. If using
existing WiFi networks in the buildings, there will be policy and security concerns. A building can
easily have products from tens of vendors. If each vendor wants its equipment to infiltrate the
WiFi network of the building, building operators need to bear overwhelming liability. Simply put,
applications such as SAMS are looking for an infrastructure-less solution.

The vendor may rely on the infrastructure of a service provider (ISP) and rent a dedicated wire-
less communication channel for each IoT device [15] to support the thing-to-cloud communication

(TCC) links. Current choices for TCC links are very limited. The readily available 3G/4G is over-
costly for the majority of IoT devices. The industry has realized this problem and is actively devel-
oping less costly wireless communication channels. User Experience-Category (CAT) represents
a group of technologies with much smaller data rates and, thus, costs [24]. CAT1 was released in
2016 and CAT0 is under deployment [28]. Nevertheless, we may expect tens of choices of commu-
nication channels with different costs and data rates, yet we will face hundreds, if not thousands,
of heterogeneous requirements. In the SAMS example, the cost of CAT1 might be justifiable for a
chiller, yet it may be too costly for a fan.

We see a clear gap between the possible choices of TCC links, and the number of requirements on
different costs and data rates from the IoT applications. To address this issue, we propose Sharing
Tube plus (sTube+) for IoT communication sharing. The objective of sTube+ is to organize a greater
number of IoT devices, with heterogeneous data communication requirements to efficiently share
fewer choices of TCC links, and transmit their data to the cloud. An example SAMS application
using sTube+ is shown in Figure 1.

To bring sTube+ into reality, the challenges not only lie in the TCC link sharing optimization,
but also that there is currently no architecture for IoT communication sharing data delivery. We
propose a design approach of centralized price optimization and distributed network control. We
architect a layered architecture for data delivery, optimize TCC link sharing, and prototype a
functioning sTube+ system. We evaluate sTube+ with experiments and simulations. Finally, we
present a SAMS case study. In this case study, we collect data from chillers and pumps, two core

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:3

Fig. 1. Smart After-Sales Maintenance Services (SAMS).

components of a centralized HVAC system, and analyze their performance in the cloud. sTube+
serves as the underlying architecture in this case study.

The contributions of the article can be summarized as:

—To the best of our knowledge, we are the first to clarify the necessity, scope, and exam-
ple applications of IoT communication sharing, and we discuss why existing architectures
cannot meet the requirement (Section 2).

—We design a layered architecture for IoT communication sharing data delivery (Section 4).
We formalize a set of problems for TCC link sharing optimization, and develop algorithms
with provable bounds (Sections 5 and 6). We prototype a fully functioning system for sTube+
(Section 7).

—We comprehensively evaluate sTube+ (Section 8). In particular, we develop a SAMS case
study, using sTube+ as the underlying architecture (Section 9).

2 THE MOTIVATION AND RELATED ARCHITECTURE

To ensure that a network architecture is practically useful, it is necessary to clarify its applica-
tion scenarios and scope. We believe that SAMS will be one killer application for sTube+. Since
SAMS is still at an emerging stage, we first briefly analyze an example SAMS and its benefits. We
then analyze the scope of sTube+, i.e., when sharing is a must or superior. Finally, we discuss the
differences between existing architectures and sTube+.

2.1 Chiller Maintenance: How SAMS Benefits

We are currently working on a real SAMS on centralized HVAC systems. We analyze the benefit
of SAMS by using chillers, one core component of an HVAC system, as an example.

The current chiller maintenance consists of routine maintenance and emergency repair, and
their respective costs are USD $897.12 and USD $5,639.94 (we use USD as the monetary unit in
the rest of this article) per time [20]. An optimal maintenance plan is a balance of routine mainte-
nance and emergency repair. This is usually done by analyzing the degradation of chillers. Intu-
itively, routine maintenance will be more frequent if a certain type of chiller degrades faster. Chiller

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:4 C. Hu et al.

Fig. 2. Average COP of chillers as a function of day.

degradation is affected by many factors, such as its intrinsic reliability and the usage pattern of the
chiller. Note that though the chiller reliability can be extensively tested in labs, the usage pattern
of a chiller is determined by customers, and is difficult to know at the time that this chiller is being
manufactured. This is one key reason that SAMS can become superior.

The key indicator for the performance (degradation) of a chiller is Coefficient of Performance
(COP) [13]. Maintenance is needed if the COP of a chiller is below a certain threshold.1 The COP
of one chiller measured in our dataset is shown in Figure 2.

To compare the current maintenance plan and SAMS, we obtained 4-year data of 10 chillers in 3
buildings. Let cM and cR denote the average cost of each maintenance and emergency repair, then
cM = 897.12 and cR = 5, 639.94. Let t , t ′ denote the average number of times of maintenance and
emergency repair of the chiller in the 1-year example, respectively. For the routine maintenance,
the total cost can be present as cRM = tcM + t

′cR . The SAMS requires an additional communication
fee, however, the monitor data rate is low, so for each chiller, the cheapest data usage plan (0.44$
for 10MB) can meet the requirement. Let cC denote the average monthly communication cost of
each chiller, then cC = 0.44. For the SAMS, the total cost can be calculated as cSAMS = tcM + 12cC .

We calculated the optimal plan for current maintenance with a routine maintenance. Let TRM

denote the interval of routine maintenance. We gradually increaseTRM , compute the correspond-
ing yearly average times of maintenance (t) and emergency repair (t ′) of the sample chillers, and,
thus, we can compute the corresponding cost CRM for each TRM . We record the optimal (cost-
less) TRM . The optimal routine maintenance interval is 3.1 months with 3.87 times maintenance
and 0.103 times emergency repair each year. The cost of one chiller of a year for current routine
maintenance is CRM = 3.87 × 897.12 + 0.103 × 5, 639.94 = $40, 527.64.

For SAMS, we can collect the chiller data in real time. According to our dataset, the average
time it costs for the COP of a chiller reduce to 5.7 after maintenance is 3.89 months; thus, we
get the average number of times of maintenance for SAMS is t = 3.13 for each year. The SAMS
requires an additional communication fee, however, the monitor data rate is low, so for each chiller,
the cheapest data usage plan ($0.44 for 10MB) can meet the requirement. The cost of one chiller
in a year is CSAMS = 3.13 × 897.12 + 12 × 0.44 = $28, 132.66. This leads to a 30.58% savings. Note
that this is only a baseline comparison. If we consider joint maintenance of multiple equipment,

1A low COP does not mean a direct chiller failure; yet it indicates sensible human comfort downgrade and substantial

energy usage inefficiency. The current threshold imposed in the country/city of Hong Kong is 5.7.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:5

a prediction of equipment degradation, and that current maintenance plan has to be conservative
(e.g., shorter than 3.1 months), we can expect a much greater gain from SAMS.

2.2 Communication Channels: Why Do We Need Sharing

The state-of-the-art wireless communication channels provide a variety of choices that trade off
communication range, data rate, and costs for different application needs. Yet the granularity of
thing-to-cloud communication choices may not be enough, in the sense that for each IoT device
with its own cost and data rate requirement, we cannot find a well-matched thing-to-cloud com-
munication channel.

Readily available self-contained solutions, e.g., 3G/4G [18], are provided by ISPs. 3G/4G are
over-powerful and expensive for most IoT applications. Alternative solutions include LTE Cate-
gory 1 (CAT1) released in 2016 and the to-appear LTE Category 0 (CAT0). New choices are being
developed, yet the progress can not match the surging requirements. More importantly, there may
be requirements that will never be developed by ISPs. For example, CAT1 has a monthly cost at
around $1 for a data volume of 45MB. Assume that a piece of equipment has a data volume of
50MB but it can only afford $1. ISPs will not deliberately develop such a plan since it makes CAT1
non-marketable. In a sharing environment, a close-by piece of equipment with residual data of
5MB per month can be shared.

There are communication channels that are free but can only form a local (LOC) network. Short-
range channels include Zigbee, Bluetooth, etc. They are good for device-to-device communication.
WiFi, LoRa and SigFox [21] can provide longer-range wireless access. These are not self-contained
since gateways are needed to reach the cloud outside. In our design, IoT devices will form LOC
networks so as to share the TCC links. This article, however, will not emphasize on the design of
the LOC networks.

2.3 Related Architecture to sTube+

Smart Building Networks: Modern buildings have building automation systems (BAS) to control
building equipment [14, 19]. Traditional BAS are mostly signal-based. An sMap architecture [12]
was developed to software-define traditional BAS. In sMap, the IoT devices are organized into a
mesh network, and a gateway is used. The target of sMap and BAS is to manage thousands of
devices, from different vendors, within a building. The target of sTube+ is to transmit the data of
thousands of IoT devices, of the same vendor, spread at hundreds of buildings, to the cloud. sTube+
differs from sMap in the supporting application context. The spread of the devices in buildings
controlled by different building owners made the gateway approach infeasible, since a building-
by-building based deployment or agreement is needed.

Ad Hoc Network: A wireless ad hoc network [27] enables devices to create and join networks
“on the fly.” Each node participates in routing by forwarding data for other nodes, so the determi-
nation of which nodes forward data is made dynamically on the basis of network connectivity and
the routing algorithm in use. In SAMS, if a node uses ad hoc, we should assume that other S nodes
are equipped with ad hoc forwarding functions, which is not the case in many situations. This
is because not all devices in the building are powerful enough to run routing functions, as some
devices have constraints in computing power, battery life, and memory. In addition, data may be
transmitted through multiple hops to the cloud, which increases the risk of packet loss.

Mobile Phones as Relays: One recent proposal to transmit IoT data to the cloud is to use
mobile phones as relays [35]. The objective is to remove the gateway, which restricts the scalability.
An opportunistic network is constructed where IoT devices will search for nearby mobile phones
to relay data. sTube+ does not rely on opportunistic data transmissions. sTube+ differs as it is clear
on who should run the transmission function.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:6 C. Hu et al.

Cellular Network/Edge Routers: Multiplexing data flow of different devices is not new. Cel-
lular base stations and edge routers aggregate data flows. sTube+ differs from them in where to
multiplex. The location of the multiplexing function of sTube+ is on the IoT devices. Traffic flow
multiplexing by base stations/edge routers is controlled by ISPs; yet in sTube+, it is controlled by
the vendors.

3G Data Sharing: Data sharing is not new. One example is the hotspot function of mobile
phones. 3G hotspot is local to a few phones, and a simple master and slave design is enough.
The requirements for sTube+, as represented by SAMS applications, need a scalable architecture
that can handle the heterogeneity of the hardware devices, an overall optimization of the cost of
a vendor, and so on. The level of complexity differs greatly. Another example is represented by
family plans, where multiple SIM cards are allowed. However, different from the SIM card sharing
in mobile data plans, we consider the IoT sharing, so that our scenario is substantially different:
(1) Multiple SIM cards sharing data plans require each device to equip with a SIM card. However,
owning and managing a SIM card is expensive compared with the limited profit (due to the small
amount of data transmitted) at a small IoT device. For example, AT&T charges USD $14.99 for
each LTE-Category 1 module (CAT1 SIM card) [3], and Deutsche Telekom Charges €199 for each
25 SIM cards [5]. A SIM card is affordable for the expensive mobile phone, while it may be over-
costly for the majority of the IoT devices. In proposed sTube+, only parts of devices (i.e., N-node)
should equip with SIM cards, which can reduce the cost significantly compared with each device
owning a dedicated SIM card. (2) The monthly data volume used by a phone is much greater than
that of a single IoT device. The ISP is unwilling to provide a small data volume plan for the profit
reason [14], for example, the data plan provided by China Telecom for NB-IoT charges according
to the connection frequency [4]. The objective of sTube+ is to organize a greater number of IoT
devices to share fewer choices of TCC links in a cost-efficient way. (3) For the profit of ISP itself,
the sharing scale ISP supposes is small. For example, only up to 3 and 10 SIM cards is admitted by
Company Single [1] andO2 [2], respectively, to share one data plan, while the devices of a vendor
in the building may be in the scale of a thousand. Since the large-scale sharing is not allowed by
ISPs, the users themselves are motivated to establish a new framework to share the large number
of devices. The proposed sTube+ supposes a larger communication sharing scale in the user side.
As such, we believe that ISPs will impose certain limits, even if plans with multiple SIM cards are
developed, making the vendor side sharing still important.

We further comment on two foundational networking paradigm Wireless Sensor Networks

(WSN) [6] and Fog Computing [10, 11]. In WSN, since wireless sensors are energy constrained
and communication dominates energy consumption, the optimization objective is on all commu-
nication links within the WSN. The constraint of sTube+ is the TCC links between things and
clouds. Thus, sTube+ differs from WSN in the optimization objective. The idea of Fog Computing is
to relocate functions to the edge, either for a fast response or for cost saving. Fog Computing is a
conceptual framework. sTube+ is developed for concrete application scenarios and can be regarded
as one instance of Fog Computing.

3 THE PROBLEM AND DESIGN OVERVIEW

In sTube+, there are two types of links, the thing-to-cloud communication (TCC) links that directly
connect to the cloud, and LOC links that are local and free. There are three types of nodes (see
Figure 1): sensing nodes (connected to the SAMS equipment), nodes with TCC links, and the cloud
servers. In this article, we call them S-nodes, N-nodes, and the clouds. Note that S-nodes and N-
nodes can be installed on the same physical equipment.

The problem is that given a pricing model of the TCC links, a set of data volume require-
ments of the S-node, and the possible locations for S-nodes and N-nodes, we must develop a TCC

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:7

link/N-node subscription and placement scheme, as well as a scheme for data delivery between
S-nodes and the cloud so that the overall monetary cost of the TCC links can be minimized.2

The challenge is that there is currently no architecture for data delivery; yet the optimization for
TCC link subscription is affected by the data delivery architecture. For example, a fully centralized
architecture may lead to a joint optimization of TCC link subscription, placement, and the routing
between S-nodes and the cloud.

We first clarify the features of the architecture: (1) the cloud has the knowledge of all S-nodes,
e.g., the vendor should know all its equipment; and (2) S-nodes have heterogeneous requirements
in data volume, incremental deployment, new future functions, and so on.

To this end, we choose a design of centralized price optimization and distributed network control.
More specifically, since the cloud has the knowledge of the location and the rough data rates of
all S-nodes, it can compute, e.g., monthly, an overall optimization of the TCC link subscription
and placement. Yet, for packet delivery, and micro-level topology dynamics such as the peering of
N-nodes and S-nodes, a distributed network control is needed for scalability.

The cloud runs the centralized price optimization algorithms, outputs the adopted data plan
and the corresponding subscripted data volume of each N-node, and transforms the result to the
N-node, respectively. According to the subscripted data volume of N-nodes, S-nodes and N-nodes
run the distributed network control algorithm to control the data flow from the S-node to the cloud
(details in Section 4.1.2).

We first design a layered architecture that supports data delivery of the S-nodes to the clouds
(Section 4). We then formulate the TCC link sharing problem and develop algorithms. Note
that the TCC link sharing optimization is a separate module from the data delivery architecture
(Section 5). In addition to cost optimization, sTube+ needs to be reliable itself. Otherwise, we will
be maintaining sTube+ rather than the equipment. We achieve this by over-deployment of the
TCC links (Section 5.4), as well as topology and data delivery recovery when an N-node fails
(Section 4.1). We also discuss a special security concern where a vendor does not want its SAMS
data to be captured by other vendors (Section 4.3).

4 THE STUBE+ ARCHITECTURE

4.1 A Layered Architecture for Data Delivery

4.1.1 An End-to-End Approach. In SAMS, each S-node represents a piece of equipment. Even
though, in our scenario, all equipment belongs to the same vendor, they differ greatly in operation,
maintenance, and services. Each of the S-node and its associated cloud application can be individ-
ually developed, e.g., by sub-divisions of the vendor, and there may need to be possible future
function extensions. We, thus, choose an end-to-end approach and let N-nodes only be respon-
sible for traffic forwarding. From the application’s point of view, the S-node talks with the cloud
directly, see Figure 3.

Note that the end-to-end approach requires the hardware of the S-nodes to be able to support
the IP layer. We believe that this is reasonable since the accumulated value of the collected data in
long-term should outweigh such one-time hardware overhead.

4.1.2 Network Topology Control. With an end-to-end design, the cloud, N-nodes and S-nodes
are all involved in the network layer. We now study how the topology/nexthops should be
managed.

2We assume that the communication cost dominates because it is a monthly recurrent cost. We ignore the hardware cost

in this article.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:8 C. Hu et al.

Fig. 3. A layered architecture.

For a very small-scale network, the cloud can adopt a centralized design, where it computes all
connections and broadcasts to the S-nodes and N-nodes peering results. For a general network,
the cloud should not be triggered by micro-level dynamics, i.e., the peering among N-nodes and
S-nodes. We choose to let the cloud only manage and monitor the data budgets of N-nodes, i.e.,
the data volume allocated to an N-node for its TCC link in a period of time. Note that the data
budgets of the N-nodes in a sub-area may be exhausted because certain S-nodes have unexpected
traffic, other N-nodes fail, new S-node joins, and so on. Nevertheless, the number of N-nodes is
much smaller than the number of equipment in the system and the frequency of budget allocation
and updates is low.

The nexthop of an N-node is the cloud directly.3 In this article, we also do not consider multiple
wireless hops where an S-node uses other S-nodes to relay its data. As such, the remaining issue
is to settle the peering between S-nodes and N-nodes.

Our objective is to minimize the complexity. We make two choices. First, we choose to let S-
nodes take the initiative to manage the peering with the N-nodes. In particular, an S-node may
need to use the data budget of multiple N-nodes. Therefore, letting S-nodes, rather than N-nodes,
take the initiative has much fewer overheads. Second, we develop an N-node peering algorithm,
where each S-node makes independent decisions, yet the joint force collectively adapts to various
network and data budget dynamics.

The N-node peering algorithm (N-peering) of the S-nodes: Each S-node maintains a set of
neighboring N-nodes. Each N-node periodically broadcasts its residual budget-index (rb-index) to
all its neighboring S-nodes. This rb-index is designed as an increasing function of its remaining
data budget. Periodically, S-node will select to connect to one N-node based on these rb-indices
sent from its neighboring N-nodes. Specifically, let N be the set of neighboring N-nodes of an
S-node and Ii denote N-node i’s rb-index. The S-node computes connection probabilities to each

neighboring N-node as pi =
Ii∑

j∈N Ij
, and connects to one of them according to these probabilities.

As a consequence, the N-node with a greater remaining budget has a greater probability to be
selected. We show the nodes interact with the N-node peering process in Figure 4.

3Theoretically, an N-node can route from other N-nodes; yet this increases the complexity and is not necessary for common

cases.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:9

Fig. 4. Illustration of nodes interaction when periodically choosing N-node.

Fig. 5. Illustration of nodes interaction when the connected N-node is failure.

Neighbor maintenance of the S-nodes: Each S-node periodically sends heartbeat signals to
check the availability/failure of its neighboring N-nodes, and updates its neighbor if the origi-
nal neighbor fails. The process is shown in Figure 5. Specifically, the S-node periodically sends
a heartbeat signal to the connected N-node and waits “alive” acknowledgement (ACK) from it. If
the S-node does not receive a response from the N-node in time t , it resends a heartbeat signal
to the connected N-node. If the S-node does not receive any response after three heart signals,
the S-node regards the N-node as a failure and updates to a new neighbor. To minimize possible
data loss, the S-nodes with a higher data rate will have a shorter checking period. Let Tci be the
checking period of S-node i . Let Di be the successive data loss that can be tolerated. Let ri be the
data rate of S-node i . Let Tu be the period needed to connect to a new neighbor. The S-node i sets

Tci =
Di

ri
− 3t −Tu . Due to the reliable transmission provided by the Constrained Application Pro-

tocol (CoAP) (described in Section 7.1), the data loss of an S-node occurs only when the connected
N-node fails.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:10 C. Hu et al.

Fig. 6. sTube+ module design.

As the very first work, we assume in this article that (1) our context is one vendor only, (2) N-
nodes will not relay traffic for other N-nodes, (3) S-nodes will not relay traffic for other S-nodes,
and (4) there is no in-network processing of the traffic. We plan to study routing of other forms,
intermediate traffic caching, coding, and so on, and multi-vendor joint optimization in our future
work.

4.2 Detailed Modules for a Functioning System

A functioning system has modules of all layers; see Figure 6.
S-nodes have four modules. The sensing module connects to the equipment and collects sensing

data. The MAC control module maintains the data link level connection between itself and the N-
nodes within its communication range. The LOC control module maintains the network topology.
The LOC data module transmits the data to the N-node.

N-nodes have five modules. MAC control module maintains the data link level connection
between itself and the S-nodes. The forwarding module relays the data received from its MAC
layer by forwarding the packet. The TCC module maintains the data link level connection be-
tween the N-node and the clouds. The LOC control module answers network layer queries from
S-nodes. The data budget module maintains its data usage and accepts recharging from the cloud if
necessary.

The cloud runs applications. The cloud has a centralized TCC link subscription and placement

module. It computes data budgets (details in Section 5) of N-nodes.

4.3 Security Concerns

IoT systems face various security problems. Common problems and solutions can be found in
Refs [9, 25]. A specific security concern for SAMS is that a vendor does not want its data captured
by other vendors. For example, an attacker may eavesdrop the data transmission from an S-node,
or fake the identity of an N-node to conduct a man-in-the-middle attack. Here, the challenge in
sTube+ is that S-nodes cannot connect to the Internet directly. As such, we need to maintain the
integrity of N-nodes.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:11

We address this problem by a simple authentication design. First, since each N-node is able
to connect to the Internet, the communications between an N-node and the cloud can be safely
established by using standard Transport Layer Security (TLS) protocols. Second, an S-node and N-
node should also be able to verify each other and establish a safe communication link. This can be
achieved via exchanging their public keys. The main issue here is how the S-node and N-node can
verify each other’s public key when the S-node is disconnected from the Internet. In our scenario,
since S-nodes and N-nodes are produced by the same manufacturer, the manufacturer can hard
code the certificate (derived from the manufacturer’s private key) when the node is produced, i.e.,
certificate pinning. The manufacturer’s public key is also pinned to the node. As a result, the two
parties are able to verify each other, even if they are disconnected from the Internet.

5 TCC LINK SHARING OPTIMIZATION

The TCC link sharing problem is to answer which N-node (location) should reserve a TCC link
from the ISP and how much budget they should reserve so as to minimize the overall monetary cost.
We formulate two TCC link sharing problems according to two widely accepted pricing models.
We show both problems are NP-complete and propose approximation algorithms. We then study
the problem to maintain the reliability of sTube+.

5.1 Problem Formulation and Analysis

5.1.1 Network Topology. Let N = {n1,n2, . . . ,nN } denote the set of possible locations of N-
nodes. Note that not all devices can act as N-nodes by considering the power of the devices. Only
the devices that are equipped with external power source and certain hardwares (e.g., memory and
computing power) can be candidates of the N-node. An N-node can be either installed or vacant.
Let f (nj) = 1 if nj is installed; f (nj) = 0 if nj is vacant.

Let S = {s1, s2, . . . , sM } be the set of S-nodes. S-node si ’s data usage in one billing cycle is ui .
Let Sj denote the subset of S-nodes, which can reach N-node nj . The term “reach” means that it is
possible for the S-node to deliver its data to the N-node through some LOC links. We assume each
S-node can reach at least one N-node.

Let ui j be the amount of data uploaded via nj . We have ui =
∑

j :f (nj)=1 and si ∈Sj
ui j . If nj is in-

stalled, the load at the TCC link of nj , denoted byUj , is the accumulated data amount uploaded by
its connected S-nodes. We have Uj =

∑
i :si ∈Sj

ui j . Otherwise, Uj = 0.

5.1.2 Pricing Model. We consider two widely adopted models; the pay-as-you-go (PAYG) model
and the monthly-plan (MP) model.

For the PAYG model, the price is represented by Equation (1). This is a staircase function. Here,
x is the data usage (i.e., Uj); L is an integer to denote the step size of pricing model. Let Pi be the
price for the i-th step of L data volume. In practice, Pi decreases as the price step increases [17]
and limi→+∞ Pi = Pmin , where Pmin is positive.

CPAY G (x) =

� x
L �∑

i=1

Pi . (1)

There are two special cases of the PAYG model. The first is that the price for all data volume
steps are equal, called PAYG-E. The price is represented by Equation (2). Here, a denotes the price
of each step. The PAYG-E is what is provided by Telecom in our experiments.

CPAY G−E (x) = a
⌈x
L

⌉
. (2)

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:12 C. Hu et al.

The second is the all-you-can-use (AYCU) model, where the price is b if an N-node is installed
and 0 if vacant. The amount of data usage is unlimited under this pricing model.

For the MP model, the ISPs provide a set of monthly data plans, denoted asD. Each N-node can
select one data plan fromD at the beginning of each billing cycle. The data plan can not be changed
in one billing cycle. For monthly data plan mh ∈ D, the price is represented by Equation (3).
Price ch is charged for a fixed amount of cap usage kh ; If the data usage hits this cap, then a
higher price d is charged for each per data usage unit. For example, the data plan may specify that
the first 1GB of data per month is charged at a flat price of $20. Any additional data above that will
cost $1 for each 1MB.

Cmh
(x) =

{
ch ,x ≤ kh ,

ch + d (x − kh) ,x > kh .
(3)

5.1.3 Problem Formulation. The overall monetary cost using PAYG is
∑N

j=1CPAY G

(
∑

i :si ∈Sj
ui j). We assume that each si can choose best peering nj to transfer a certain amount of

its data. Thus, we arrive at the following problem:

Problem 1 (PAYG TCC Sharing). Determine the placement of N-nodes f (nj) and the amount

of data uploaded via N-nodes for each S-node ui j , ∀i, j, subject to (1)
∑

j :f (nj)=1 and si ∈Sj
ui j =

ui ,∀i , (2) ui j = 0, if si � Sj or f (nj) = 0, to minimize the sum PAYG costs over all N-nodes∑N
j=1CPAY G (

∑
i :si ∈Sj

ui j).

The MP model provides a set of monthly data plans. Choosing different data plans for N-nodes
will cause different overall monetary costs. Let dj ∈ D be the data plan employed by N-node nj .
We have the following problem:

Problem 2 (MP TCC Sharing). Determine the placement of N-nodes f (nj), the amount of

data uploaded via N-nodes for each S-node ui j , and the employed data plan d ′j , ∀i, j, subject to (1)∑
j :f (nj)=1 and si ∈Sj

ui j = ui ,∀i , (2) ui j = 0, if si � Sj or f (nj) = 0, to minimize the sum MP cost over

all N-nodes
∑N

j=1Cd ′j
(
∑

i :si ∈Sj
ui j).

5.1.4 Problem Analysis.

Theorem 1. Problems PAYG TCC Sharing and MP TCC Sharing are both NP-complete.

Proof. We prove this theorem by transforming both problems into the set cover problem [29].
For the PAYG TCC Sharing Problem, we consider a special case that ui = 1,∀i , and L is sufficiently
large, P1 = Pmin = a, so that the monetary cost at each N-node is a if it is active and is 0 if inactive.
Therefore, we aim to minimize the number of active N-nodes. As a result, the PAYG TCC Sharing
Problem is equivalent to an optimal set cover problem: to select a minimum number of sets from
{S1,S2, . . . ,SN } that covers all elements in the universe S.

For the MP TCC Sharing Problem, we consider a special case thatui = 1,∀i , and only a 1-month
plan with unlimited data volume and the cost of C is provided, so that the monetary cost at each
N-node is C if it is active and is 0 if inactive. Therefore, we aim to minimize the number of active
N-nodes. As a result, the MP TCC Sharing Problem is equivalent to an optimal set cover problem:
to select a minimum number of sets from {S1,S2, . . . ,SN } that covers all elements in the universe
S. The set cover problem is NP-complete, so Problems PAYG TCC Sharing and MP TCC Sharing
are both NP-complete. �

The complexity of exhaustive search for solving the whole problem is Θ((P + 1)N), where N is
the number of possible N-nodes and P is the number of data plans. We note that, intrinsically, the
complexity comes from N-node covering S-nodes (the placement of TCC links/N-nodes), rather
than from the pricing model (the subscription of the TCC link prices for the N-nodes).

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:13

5.2 The Approximation Algorithm for PAYG TCC Sharing

5.2.1 The Algorithm. The overall problem can be divided into two subproblems: TCC link place-
ment to cover all S-nodes, and subscription of a pricing plan at each placed N-node. The TCC link
placement to cover all S-nodes is a set cover problem. We adopt the greedy algorithm in Ref. [29].
For price subscription, we develop a simple algorithm where every N-node subscribes P1, i.e., the
first step price, and recharge Pl (l = 2, 3, ...) if necessary. We call this algorithm Fast N-node De-
ployment (FND).

Lemma 1. In the PAYG model, assume we have an optimal coverage. Then FND is optimal.

The optimality is because in the PAYG model, the price of each step decreases as the step in-
creases, i.e., a convex function. Again, we see that the complexity comes from the coverage.

We would like to comment that FND will output a placement of N-nodes with an implicit as-
sumption that the S-nodes covered by an N-node will peer with this N-node. Such best peering
needs a centralized control (e.g., after the cloud runs FND, it has to inform all N-nodes and S-nodes).
In our sTube+ design, the peering control is distributed to S-nodes.

5.2.2 Approximation Ratio Analysis. We now show that FND is an approximation algorithm for

PAYG TCC Sharing with an approximation ratio of
2P 2

1

P 2
min

(lnM + 1).

Let the performance of FND be rfnd, and the optimal performance of PAYG TCC sharing be ropt.
We aim to bound the approximation ratio rfnd

ropt
. Directly bounding rfnd

ropt
is challenging. We introduce

an auxiliary performance, rosc, which is the monetary cost led by an optimal set cover algorithm
of S-nodes. Through the auxiliary algorithm, the number of installed N-nodes is minimized.

We can bound the ratios of rfnd

rosc
and rosc

ropt
.

Lemma 2. The ratio of the
rfnd

rosc
is bounded by P1

Pmin
(lnM + 1).

Proof. Let Kh ,Ko denote the number of sets of FND and the optimal set cover, respectively.

In Ref. [34], it proves Kh

Ko
≤ lnM + 1. Let X denote the total data usage of all S-nodes, and X =

LQ + R, whereQ ∈ N, 0 ≤ R < L. Let xi (i = 1, 2, . . . ,Kh) denote the data usage of set i of FND, and

xi = Lqi + ri , where qi ∈ N, 0 ≤ ri < L. Thus, we have
∑Kh

i=1 xi = X . Let l (y) denote the indicator
function to indicate if y is 0. l (y) = 0 if y = 0; l (y) = 1 if y > 0. We consider the following two
cases.

Case 1: x ≥ LKo ,Q ≥ Ko . It is easy to prove that
∑kh

i=0 ri ≥ R by reduction to absur-

dity. rf nd =
∑Kh

i=1

∑qi

j=1 Pj +
∑Kh

i=1 Pqi+1l (ri). rosc =
∑Q

i=1 Pi + PQ+1l (R). Thus, we have:
rf nd

rosc
=

∑Kh
i=1

∑qi
j=1 Pj+

∑Kh
i=1 Pqi +1l (ri)∑Q

i=1 Pi+PQ+1l (R)
≤ P1

Pmin

X−∑Kh
i=1

ri
L +

∑Kh
i=1 l (ri)

Q+l (R) ≤ P1

Pmin
(

X−R
L

Q+l (R) +
∑Kh

i=1 l (ri)

Q+l (R)) ≤ P1

Pmin
(1 + Kh

Ko
) ≤

P1

Pmin
(lnM + 1).

Case 2: X <LKo ,X >Kh . rosc ≥P1Ko . rf nd ≤ P1�X−(Kh−1)
L

� + Kh − 1 ≤ P1� LKo−(Kh−1)
L

� + Kh − 1.

Thus,
rf nd

rosc
≤ � LKo−(Kh−1)

LKo
� + Kh−1

Ko
≤ 1 + Kh

Ko
≤ lnM + 1.

Case 1 and Case 2 are exhaustive. The induction is complete. �

Lemma 3. The ratio of the rosc

ropt
is bounded by 2P1

Pmin
.

Proof. Let Ko denote the number of sets of the optimal set cover. Let X denote the total
data usage of all S-nodes, and X = LQ + R, where Q ∈ N, 0 ≤ R < L. Let xi (i = 1, 2, . . . ,Kh) de-
note the data usage of set i of FND, and xi = Lqi + ri , where qi ∈ N, 0 ≤ ri < L. Thus, we have∑Ko

i=1 xi = X . Thus, we have
∑Ko

i=1 xi = X . It is easy to prove that
∑ko

i=0 ri ≥ R and
∑ko

i=0 qi ≤ Q

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:14 C. Hu et al.

by reduction to absurdity. Let l (y) denote the indicator function to indicate if y is 0. l (y) =

0 if y = 0; l (y) = 1 if y > 0. Thus, rosc =
∑Ko

i=1CPAY G (xi) =
∑Ko

i=1

∑qi

j=1 Pj +
∑Ko

i=1 Pqi+1l (ri) ≤
P1 (
∑Ko

i=1

∑qi

j=1 P1 +
∑Ko

i=1 Pl (ri)) ≤ (Q + Ko)P1. The optimal cost plan fills up the first step of the

Ko sets and the reminder data usages are contained by one set. Then, we have ropt ≥ KoP1 +

CPAY G (X − (Ko − 1)L) ≥ KoP1 +
∑X−(Ko−1)L

i=2 Pi = KoP1 +
∑ �X

L �−Ko

i=2 Pi ≥ �X
L
�Pmin . Thus, rosc

ropt
≤

(Q+Ko)P1

�X
L �Pmin

=
P1

Pm in
Q+Ko

�X
L �
≤ P1

Pmin

Q+Ko

Q+ � Ko
L �
≤ P1

Pmin

2Q

Q+ � Ko
L �
≤ 2P1

Pmin
.

The induction is complete. �

Theorem 2. The approximation ratio of FND is
2P 2

1

P 2
min

(lnM + 1).

Please note that the factor lnM stems from the greedy set cover algorithm [34]. It is the best-
known approximation ratio in solving the set cover problem within a polynomial complexity. Since
the TCC sharing problem is more complicated than the set cover problem, the factor lnM is un-
avoidable in this scenario.

5.3 The Algorithm for MP TCC Sharing

ALGORITHM 1: N-node placement and subscription, NPS(S,N).

1: InitializeZ = ∅,N ′ = 0,minset = ∅,mincost = +∞
2: [N ′,Z]← greedySC(S,N)
3: while N ′ < |N | do

4: [N ′,Z]← Node-Partition(Z,N ′)
5: [minset ,mincost]← Binary-Search-Cost(Z,N ′)
6: end while

7: returnminset ,mincost

For the MP pricing model, the pricing plan does not have a convex structure. We develop an
N-node placement and subscription (NPS) algorithm for the MP pricing model. This algorithm is
divided into two sub-functions: Node-Partition() and Binary-Search-Cost(). Given a node
number N ′, Node-Partition() will decide a covering scheme by using N ′ nodes. Given a node
covering schemeZ, the sub-function Binary-Search-Cost() will search for the minimized cost
for these covering sets.

The overall algorithm NPS() is an iterative algorithm. It starts from the minimum set cover
(line 2, greedySC()) and then the sub-function Node-Partition() will gradually increase the
number of N-nodes (line 4). Then, the sub-function Binary-Search-Cost() will determine the
cost of such partition (line 5). The algorithm stops when the number of nodes is greater than
the number of possible locations of N-nodes (line 3).

5.4 Improving the Reliability of sTube+

Both S-node and N-node may fail. We assume that the probability that an S-node fails, ps , is much
less than the equipment itself. In production, S-node (as the communication module) should be
integrated into the equipment. We see that the failure rate of the communication module of a
device is typically very low. Taking the mobile phone as an example, batteries, screens, and the
like are much easier to fail than the Bluetooth, WiFi, and 3G/4G modules.

We say that an S-node experiences a service outage if it cannot reach any N-node or it experiences
a failure. Let the probability of failure of N-nodes be pn . The service outage probability of si can be

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:15

computed as pout (si) = 1 − (1 − ps) (1 − pRi
n), where Ri is the number of N-nodes that is reachable

by si . As such, the average outage probability of S-nodes is pout =
1
M

∑M
i=1 pout (si).

Problem 3 (TCC Sharing-Availability). Let preq be a threshold of the required average outage

probability, we aim to deploy enough N-nodes such that pout < preq.

We develop algorithm TCC-OD with over-deployment of N-nodes as follows. We compute pout

under the current network topology. Ifpout < preq, we iteratively install one additional N-node that
can maximally decrease pout.

6 INCREMENTAL DEPLOYMENT OF S-NODE

We now specifically consider the incremental deployment of S-nodes. In practice, a vendor may
deploy their products into a building according to a strategy. The strategy does not allow to deploy
a certain number of S-nodes into a building at one time and requires to deploy these S-nodes step by
step during a long period, due to the negotiation of building management, incremental purchasing
by the building and so on. The vendor may know the possible S-nodes that will be deployed in a
building over a long period, but it does not know which S-nodes will be deployed in which billing
cycle and the deploying sequence of the S-nodes. We formulate the TCC link sharing problem
under the incremental deployment of S-nodes according to the PAYG pricing model. We show this
problem is NP-complete and propose approximation algorithms.

6.1 Problem

Let S′ = {s ′1, s ′2, . . . , s ′M ′ } be the set of the possible deploying S-nodes. Let Q be the deploying se-
quence of the S-nodes in a billing cycle. The elements of S′, the locations of N-nodes N , and the
subset of S-nodesSj that can reach N-nodenj are known in advance; however, the set of deploying
S-nodes Q given is not known in advance.

We have the following PAYG TCC Sharing under Incremental Deployment (PAYG-TS-ID) prob-
lem:

Problem 4 (PAYG-TS-ID). Given the locations of N-nodesN , the possible deploying S-nodesS′, the

monthly data volume of S-nodes si , and the deploying sequence of S-node Q, determine the placement

of N-nodes f (nj)and the amount of data uploaded via N-nodes for each S-node ui j , to minimized the

sum PAYG cost over all N-nodes
∑N

j=1CPAY G (
∑

i :si ∈Sj
ui j).

Theorem 3. Problem PAYG-TS-ID is NP-complete.

Proof. To show the problem PAYG-TS-ID is NP-complete, we reduce the online set cover Prob-
lem in Ref. [7] to it. The former is proven NP-complete in Ref. [8]. The proven theorem is viewed
as follows: Given a ground set of M ′ elements Y = {y1,y2, . . . ,yM ′ }, Y’s family of subsets T ,
|T | = N , consider a game between an algorithm and an adversary. An adversary gives elements
to the algorithm from Y one by one. Once a new element is given, the algorithm has to cover it
by some set of Y containing it. Denote by Y′ ⊂ Y the set of elements given by the adversary. It
is NP-complete to minimize the number of the sets chosen by the algorithm.

We consider the following special case: all S-nodes have equal monthly data volume, and the
PAYG pricing model is an all-you-can-use pricing model. Now, we can regard the set of the possible
deploying S-node S′ as the ground setY in the online set cover, the sequence of deploying S-node
Q as the set of elements Y′ given by the adversary, and the subset of S-nodes Sj that can reach
N-nodes nj as the element of T . As a result, the PAYG-TS-ID Problem is equivalent to an optimal
online set cover problem: to select a minimum number of sets from {S1,S2, . . . ,SN } that covers
all elements Y′ given by the adversary from the universe Y . �

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:16 C. Hu et al.

6.2 The Approximation Algorithm for PAYG-TS-ID

6.2.1 The Algorithm. The PAYG-TS-ID problem can be divided into two subproblems, i.e., TCC
link placement and TCC link subscription as described in Section 5.2.1. We develop an online
N-node placement and subscription (ONPS) algorithm for PAYG-TS-ID. The ONPS algorithm
contains two subfunctions online-node-place() and node-subscription(). The subfunction
online-node-place() adopts the online algorithm in Ref. [8] to determine the placement of N-
nodes according to the sequence of deploying S-nodes Q. The subfunction node-subscription()
subscribes P1, i.e., the first step price for every N-node and recharge Pl (l = 2, 3, . . .), if necessary.

6.2.2 Approximation Ratio Analysis. We now show that ONPS is an approximation algorithm

for PAYG-TS-ID with an approximation ratio of P1

Pmin
(

log M ′ log N

log log M ′+log log N
+ 1).

Theorem 6.1. The approximation ratio of ONPS for PAYG-TS-ID is P1

Pmin
(

log M ′ log N

log log M ′+log log N
+ 1).

Proof. Let the cost of ONPS be rf , and the optimal cost of PAYG-TS-ID (denoted as OPT) be ro.

Directly proving rf

ro
≤ P1

Pmin
(

log M ′ log N

log log M ′+log log N
+ 1) is hard; we prove this by divide and conquer. As

the cost is related to the number of installed N-nodes and the number of purchased data volume
steps under the PAYG pricing model, we first prove the installed N-node number of ONPS (denoted

as kf) and OPT (denoted as ko) meets kf

ko
≤ log M ′ log N

log log M ′+log log N
; then, we prove the purchased steps

of ONPS (denoted as tf) and OPT (denoted as to) meets tf ≤ to + kf . Based on these, we can prove
rf

ro
≤ P1

Pmin
(

log M ′ log N

log log M ′+log log N
+ 1).

We first prove kf

ko
≤ log M ′ log N

log log M ′+log log N
. Let kmin be the minimum number of N-nodes that can

cover all S-nodes. We have kmin

ko
≤ 1 and kf

kmin
≤ log M ′ log N

log log M ′+log log N
(by the approximation ratio of the

online set cover algorithm in Ref. [8]). Then, we have kf

ko
≤ log M ′ log N

log log M ′+log log N
.

We then prove tf ≤ to + kf . Let X denote the total data usage of all S-nodes, and x = Lq − r ,
where q ∈ N, 0 ≤ r < L. q ≤ tf , q ≤ to (otherwise, the purchased data volume of FND and OPT
is smaller than total data usage x). Let x j (j = 1, 2, . . . ,kf) denote the data usage of the installed
N-node j of ONPS, and x j = Lej − r j , where ej ∈ N, 0 ≤ r j < L. ej is the steps purchased by the in-

stalled N-node j; thus, tf =
∑kf

j=1 ej , x = qL − r = L
∑kf

j=1 ej −
∑kf

j=1 r j . We have tf = q − r
L
+

∑kf
j=1 r j

L
,

as 0 ≤ r j < L, and we have tf ≤ q + kf L
L
= q + kf .

At last, we prove rf

ro
≤ P1

Pmin
(

log M ′ log N

log log M ′+log log N
+ 1) based on the above proof. The price of each step

ranges fromp1 topmin; thus, rf ≤ p1tf and ro ≥ pminto. rf

ro
≤ p1tf

pminto
≤ p1

pmin
(to

to
+

kf

to
), each installed N-

node must purchase at least one step, thus to ≤ ko , so rf

ro
≤ p1

pmin
(1 + kf

ko
) ≤ P1

Pmin
(

log M ′ log N

log log M ′+log log N
+

1). �

7 IMPLEMENTATION

We present an implementation of the sTube+ architecture. This includes the MAC layer, network
layer, and application layer. We present a case study of a SAMS in Section 9, where we develop the
sensing module to collect data from real equipment and conduct data analytics in the cloud.

7.1 The Network Stack

MAC layer: We implement IEEE 802.15.4, ZigBee, and Bluetooth as the MAC layer for the LOC
network. We choose CAT1 as the MAC layer for the TCC link.

Network layer: We choose 6LoWPan (IPv6) as the networking layer protocol. There are two
special challenges.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:17

Fig. 7. End-to-End Communication.

The first is that our CAT1 only supports IPv4. Moreover, it only provides application layer in-
terfaces. Thus, we develop an IPv6-IPv4 converter. It locates in the application layer of the N-node
(see Figure 7), yet it emulates the network layer. It has two functions: packet format transformation
and IPv6-IPv4 address mapping.

For packet format transformation, the packet we get from the LOC network is an IPv6 packet. We
remove all headers to get the application packet. Then, we put such packet to the CAT1 interface.
The address mapping is done by mapping a group of IPv6 addresses to an IPv4 address (the address
of CAT1) and a port. Every N-node establishes a table of the mapping. Each entry in this table is
automatically inserted when the first packet from the S-node reaches the N-node, i.e., N-node
allocates each S-node connected to it through a universal port with the CAT1’s IPv4 address.

The second challenge is that, in practice, an S-node should have a fixed IP address. Yet in our
implementation, each S-node gets its IPv6 address from an N-node using the uIP library from
Contiki, making the IP address dynamic. Since the interaction between an S-node and the cloud
is bi-directional, the dynamic IP address can break the interaction. To this end, in the application
layer, we develop a notification mechanism such that if the IP address of the S-node changes, the
S-node will notify the cloud.

Application layer: We use CoAP and UDP for application layer protocols. sTube+ chooses
the optional reliable transmission model of CoAP. Specifically, reliable transmission in CoAP is
achieved by marking individual messages with the confirmable flag. When the cloud receives a
confirmable message, it responds with an acknowledgment message to let the S-node know the
message arrived. The S-node will automatically retransmit a confirmable message if an acknowl-
edgment message is not received in the timeout interval.

7.2 The Routing Choice

In our IoT application context, data are routed from the S-nodes to the cloud. We choose OPv6
Routing Protocol for Low-Power and Lossy Networks (RPL) [32] for routing. RPL is a gradient
routing technique that organizes nodes as a Direct Acyclic Graph (DAG) rooted at the sink. RPL
has an objective function. The goal is to minimize the cost to reach the sink from any node. This
function has to be customized. Recall that in our algorithm, we compute the amount of traffic an
S-node sends to each peering N-node. In our implementation, the objective function maintains
a “volume-N-node” table. The table records the residual data volume of the S-node that can be
transmitted through its peering N-node. The objective function chooses the N-node with residual
data volume in a round-robin fashion.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:18 C. Hu et al.

Fig. 8. The S-node.

Fig. 9. The N-node.

7.3 Hardware Choices

The S-nodes: We use Arduino MEGA 2560, STM32, and Raspberry Pi 3 Model B as the S-node
hardware board (Figure 8) by considering the different requirements of the capability of the hard-
ware board from the equipment and the hardware cost. For example, for the Fan, only the speed
of the fan should be sensing and the cheap Arduino board can meet its requirement. While for
the chiller, the S-node gains the sensing data from the chiller control interface, and Modbus RTU
protocol should be run on the hardware board; thus, the more powerful and expensive raspberry
pi should be adopted. For the LOC module, we use a Texas Instruments CC2560 SimpleLinkTM

Wireless MCU for the 802.15.4 radio interface.
The N-nodes: We use a Raspberry Pi 3 Model B as the N-node platform (Figure 9). For LOC side,

we use a Texas Instruments CC 2560 SimpleLinkTM Wireless MCU for the 802.15.4 radio interface.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:19

Table 1. The Monthly Data Plans

Type 1 2 3 4 5 6 7 8
Price $3 $5 $12 $32 $40 $85 $135 $210

Volume 10MB 50MB 200MB 700MB 1GB 3GB 8GB 15GB

Fig. 10. The network topology of the experi-

ments.

Fig. 11. The monthly cost of different schemes.

Then, this module is connected to Raspberry Pi using a USB-to-serial cable. For the TCC side, as
the interface of Raspberry Pi is Transistor-Transistor Logic (TTL), while the interface provided by
CAT1 is RS-232, we use the MAX3232 as a converter. The baud rate of the serial port is 19,200 bits
per second, i.e., 2,400 bytes per second. The CAT1 module supports speeds of 5Mbps upload and
10Mbps download. Thus, the maximum sample rate the proposed approach can adapt is 2,400 bytes
per second. We rent CAT1 data plans from Telecom Anonymity.

The Cloud: We rent a server in Cloud Anonymity with 8 cores of 2.5GHz, and a total memory
of 128GB. The data in the cloud are stored in XML format.

8 EVALUATION

8.1 Experiment

8.1.1 System Setup. The network topology is shown in Figure 10. There are three N-nodes and
five S-nodes. The links are configured as in the figure. We set S1 and S2 to transmit 200 bytes at once
every 3 minutes, and S3, S4, and S5 to transmit 600 bytes at once every minute. For the incremental
deployment of S-node, we deploy S-node from S1 to S5 one by one. We use two pricing models. The
first one is provided by China TeleCom, a PAYG-E model, where each 40MB costs $1. The second
is a MP model where available monthly data plans are shown in Table 1 with $0.60 charged for
each 1MB exceeding the cap, i.e., d = 0.6 in Equation (3).

We compare three algorithms: (1) Exclusive channel occupation (ECO), the scheme without IoT
sharing, (2) FND, and (3) NPS.

8.1.2 Experiment Results. The system is turned on for 7 days and the overall data usage is scaled
to one month under the controlled experiment. We derive the overall monthly cost of different
schemes. The result is shown in Figure 11. From Figure 11(a), we see that in the PAYG-E model,
FND leads to a cost saving of 40% as compared with ECO; in Figure 11(b), for the MP model, NPS
leads to a cost savings of 48% as compared with ECO.

For the incremental deployment of S-node, we compare the following three algorithms: (1) ECO,
(2) Random connection (RC), where the new S-node chooses an N-node within its range randomly

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:20 C. Hu et al.

Fig. 12. The monthly cost of incremental deploy-

ment of S-node under different schemes.

Fig. 13. The packet loss as function of sampling

period.

Table 2. Explanation of the Behavior of FND Shown in Figure 14

Time Event and Explanation
t1 Turn off N2 to emulate N2 failure.
t2 N2 does not reply to heartbeat messages so that the failure is detected. S3

and S4 connect to N1 and N3.
t3 Turn on N2 to emulate N2 recovery.
t4 New rb-index received. Since N2 has a larger balance, S3 and S4 change

connections to N2.
t5 Even N3 sends small rb-index to show “low balance,” S5 has to stick to it

so that N3 recharges.
t6 N2 sends small rb-index to show “low balance,” S3, S4 change connections

to N1 and N3

to connect, (3) ONPS. The overall monthly cost result of the incremental deployment is shown in
Figure 12. From Figure 12, we see that under the PAYG-E model, ONPS outperforms ECO and RC
by 40% and 25%, respectively. This matches our expectation since sTube+ TCC link sharing will
bring significant cost reductions. Next, we will evaluate different configurations using simulations,
and we will see that the savings can be more significant when the network is larger.

We now study the operation behavior of sTube+. We run sTube+ for 70 minutes. During this
period, we intentionally add some events as shown in Table 2, to emulate node failures, budget
exhaustion events, in N-nodes, and so on. We show the operations of sTube+ in Figure 14. Here,
we have four sub-charts. The top three charts show the package received and sent by N1, N2, and
N3, respectively. The bottom chart shows the residual budget of N1, N2, and N3.

At t1, N2 is off. We see that S3 and S4, which are originally attached to N2, switch to N 1 and
N3, respectively, at t2. At t3, we turn on N2. This does not immediately trigger the return of S3

and S4, since it is the S-nodes who initiate the peering of S-nodes and N-nodes in our design. At
t4, where N-nodes broadcast their residual budget-indices (rb-indices), all S-nodes independently
recompute their peering relationship, and S3 and S4 reconnect to N2. At t5, the data budget of N3

is exhausted, and this triggers a recharge of the data budget of N3 as explained in Section 5. At t6,
the data budget of N2 is exhausted, and N2 sends small rb-index to show “low balance,” and S3 and
S4 change connections to N1 and N3, respectively.

We only observe one packet loss at one event—t1. The loss occurred because the failure hap-
pened before neighbor updates. We conduct 3 days of experiments without N-node failure, and we

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:21

Fig. 14. The behavior of FND under the controlled environment.

observe that no data loss occurs. We also conduct experiments on the topology only containing S3,
N1, and N2. We set the check period to be 1 minute. We manually turn off N1 and record the num-
ber of the packet loss of S3 under a different sampling period. The result is shown in Figure 13. We
can observe that the number of packet losses is at most one when the sampling period is greater
than 10 seconds. Note that, in practice, the sampling period can be bigger than 5 seconds. It is also
possible to fine-tune the neighbor update interval and check period to reduce packet losses.

8.2 Simulation

We now use simulations to evaluate sTube+ in large-scale networks and under various parameter
settings.

8.2.1 Simulation Setup. We set the network topology by deploying S-nodes and N-nodes ran-
domly and uniformly in a 100 × 100 m2 plane. There are 1,000 S-nodes and 100 N-node locations.
In our tech-report [16], we also evaluate more complicated scenarios where S-nodes and N-nodes
are normally distributed leading to similar results. The default data traffic pattern is called Mice
and Elephants Only (MEO) where the data volume of 95% of S-nodes is uniformly distributed from
1MB to 3MB, and the data volume of the rest of the 5% of S-nodes is uniformly distributed from
30MB to 50MB. We will evaluate other traffic patterns in Section 8.2.2 as well.

We study four pricing models: (1) PAYG, the first 40MB costs $1, i.e., L = 40, P1 = 1, and the
prices of the following 40MB steps are $0.8, i.e., P2, P3, . . . = 0.8; (2) PAYG-E, each 40MB costs $1;
(3) AYCU, $3 is charged without data usage limitation; and (4) MP, the monthly data plans are
shown in Table 1 with $0.6 charged for each 1MB exceeding the cap, i.e., d = 0.6.

The default broadcasting frequency of rb-index is set to 10 times per month. We set the default
pn = 10%, pr eq = 8%.

8.2.2 Simulation Results. We first compare ECO and FND under three PAYG models in
Figure 15. We see that FND shows a much higher cost savings as compared to our experiment
results. This matches our expectation since the advantage of sharing becomes more significant
when there are more S-nodes to share. FND outperforms PAYG, PAYG-E, and AYCU by 91%, 89%,
and 95%, respectively. The AYCU has higher savings compared to PAYG and PAYG-E. This is

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:22 C. Hu et al.

Fig. 15. The cost of ECO and sTube+ under differ-

ent pricing models.
Fig. 16. The cost of ECO and NPS under different

traffic models.

because the data usage of AYCU is unlimited and more S-nodes can share one TCC link without
leading to cost increase. The PAYG has a higher savings ratio compared to PAYG-E. The reason is
that the price of the step in PAYG becomes cheaper as the TCC link purchases more steps. Thus,
more S-nodes sharing one TCC link leads to a cheaper average cost and higher savings percentage.

In Figure 15, we also compare ECO and NPS under the MP pricing model. We see a cost savings
of 78%, which is less than that of PAYG. This is because, in the MP pricing model, the cost gap of
two adjacent plans is bigger; thus, if the data volume of one monthly data plan can not meet the
requirement of an N-node, the N-node should purchase the other one whose price is much higher.
While in the PAYG model, the TCC link can purchase steps, which are cheaper one by one.

The Impact of Determined Traffic Pattern: We consider four data traffic patterns of S-nodes:
(1) Mice Only (MO): the data usage of each S-node is uniformly distributed from 1MB to 3MB;
(2) Elephants Only (EO): the data usage of each S-node is uniformly distributed from 30MB to
50MB; (3) From Mice to Elephants (M-E): the data usage of each S-node is uniformly distributed
from 1MB to 50MB; and (4) our default MEO.

In Figure 16, we show the costs of NPS under the aforementioned four traffic patterns in the
MP pricing model (we also evaluate the overall costs of PAYG, PAYG-E, and AYCU under the four
traffic patterns in Ref. [16]). NPS outperforms ECO by 83%, 57%, 66%, and 78% under MO, EO, M-E,
and MEO, respectively. We observe that a greater average data volume of S-nodes will lead to a
smaller cost savings gap between NPS and ECO. The reasons are: (1) More nodes can share one
step without increasing extra cost if the data volumes of nodes are small; (2) Compared to serving
S-nodes with big data volume, sTube+ can serve S-nodes with small data volume well since the
fine data volume is easier to be arranged. This illustrates that NPS works effectively under the four
traffic patterns.

The Performance of the S-node Incremental Deployment Algorithm: We compare our
online S-node incremental deployment algorithm ONPS with ECO and RC. We deploy the 1,000
S-nodes in an orderly way.

In Figure 17, we present the over costs of ONPS, ECO, and RC when the pricing models are
PAYG, PAYG-E, and AYCU. We can observe that ONPS outperforms RC by 67.4%, 50.9%, and 18.8%
under PAYG, PAYG-E, and AYCU, respectively. We can also observe that ONPS leads a cost savings
of 75.8% , 61.2%, and 93.1% compared to ECO under three pricing models, respectively. We see that
when comparing the cost savings ratio between FND and ECO, the cost savings ratio between
ONPS and ECO decreases. This is because FND has the overall knowledge of the deployment of
all S-nodes at the beginning of each billing cycle, while ONPS gains the deployment of S-nodes in
an orderly way, i.e., FND has more information of the deployment of S-nodes compared to ONPS
when optimizing the deployment of N-nodes.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:23

Fig. 17. The cost of ECO, RC, and ONPS under

different pricing models.

Fig. 18. The CDF of underutilized ratio of data vol-

ume.

The Impact of Price Granularity: The granularity means the data volume gap between two
adjacent price plans. For example, in our default pricing model, the granularity of prices is 40MB
for the PAYG model. It is possible that ISPs can develop more wireless channels with fine-grained
pricing models. However, to beat the cost of sTube+, ISPs have to develop pricing models with
unrealistic granularity.

In Figure 18, we present the cumulative distribution function (CDF) of the ratios of underuti-
lized data volume of N-nodes under ECO and NPS, when granularities are 1MB, 20MB, and 50MB,
respectively. We can observe that the underutilized data volume ratio of all N-nodes of NPS is un-
der 10% under the 1MB, 20MB, and 50MB granularity. For the ECO, the underutilized data volume
ratios of N-nodes range from 0% to 100%, only when the granularity is down to 1 MB. Most of
the N-nodes’ underutilized data volume ratios are under 10%. This illustrates that if ECO wants
to reach the performance of sTube+, ISPs should provide unrealistic granularity pricing models.
On the other hand, the proposed TCC sharing can address this problem without requiring fine
granularity.

The Performance of the N-Peering Algorithm: We compare our N-peering algorithm with
two algorithms employing NPS for the TCC links. Fixed N-node Connection (Fix): each S-node
randomly connects to one active N-node and sticks to it. Periodic Random N-node Connection
(Random): each N-node randomly selects one active N-node every update period.

We show the CDF of the exceeded percentage of traffic loads of N-nodes in Figure 19. Please
note that a higher exceeded percentage will lead to a worse performance, since a higher rate price
is charged for each exceeding data usage unit. The subscribed data usage is not exceeded by 80%
of the N-nodes of Random and 90% of the N-nodes of N-peering, but the percentile becomes only
49% for Fix. Compared with Fix, we notice that most N-nodes do not use up the subscribed data
usage, through using Random and N-peering, with the help of periodic budget updating. Moreover,
compared with Random and Fix, the exceeded percentage of N-peering is much smaller. Such
observations suggest that N-peering is beneficial to balance the traffic loads among N-nodes and
distribute the traffic loads with the help of rb-index in more cost-efficient fashions.

The Performance of Over-Deployment on Reliability: In order to meet the required aver-
age outage probability pr eq , sTube+ employs the TCC-OD algorithm (Section 5.4) to over-deploy
more N-nodes. We call the ratio between the number of over-deployed N-nodes and the number of
N-nodes computed by NPS the over-deploy ratio. Figure 20 shows the required over-deploy ratio as
a function of pr eq under ECO and NPS. We observe that ECO needs to over-deploy many more N-
nodes than that of NPS to meet the same pr eq . When pr eq is bigger than 6%, NPS is not required to
deploy additional N-nodes; when pr eq is 2%, we only need to over-deploy 10% of N-nodes for NPS

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:24 C. Hu et al.

Fig. 19. The CDF of the exceed load percentage of

N-nodes.

Fig. 20. The over-deploy ratio of ECO and NPS as a

function of pr eq .

Fig. 21. The monthly cost of NPS as a function of

update period.
Fig. 22. The cost of ECO and sTube+ under dy-

namic traffic pattern.

but 89% for ECO. This illustrates that, to meet the same reliability, much fewer N-nodes should be
deployed for sTube+ employing the TCC-OD algorithm compared with ECO.

The Performance on the Update Period: We study the effects of broadcasting frequency of
rb-index of N-peering. We observe that the overall cost is decreased by 41% for NPS when the
frequency is increased from 2 to 10 each month, as shown in Figure 21. This illustrates that a
reasonably frequent broadcast of rb-index is helpful to further reduce the overall cost. However,
the cost reduces less than 5% when the frequency is increased from 10 to 30 each month. This
illustrates that anrb-index broadcasting that is too frequent is not necessary as it will not reduce
the cost.

The Impact of Dynamic Traffic Pattern: In dynamic traffic pattern, each S-node has a basic
monthly data volume with a certain fluctuation. We study the MEO basic traffic pattern and each
S-node has up to a 20% fluctuation.

In Figure 22, we first compare ECO and FND under three PAYG models. We see that FND out-
performs PAYG, PAYG-E, and AYCU by 90%, 90%, and 95%, respectively, which is similar to the
cost-saving ration compared to the determined traffic pattern. This is because, under the PAYG
pricing model, the data volume is purchased step by step, thus, the dynamic traffic pattern has no
influence to the cost compared to the determined traffic pattern.

In Figure 22, we also compare ECO and NPS, which subscribes the data volume according to the
basic monthly data volume. We see a cost savings of 62%, which is less than that of the determined
traffic pattern. This is because the data volume is subscripted at the beginning of the billing cycle,
and if the purchased data volume cannot cover the usage, the exceeded data volume is charged a
much higher price. Under the MP pricing model, we can purchase more data volume than the basic

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:25

Fig. 23. The cost of ECO and sTube+ as a function of a more subscribed percentage.

Fig. 24. A typical centralized HVAC system.

monthly data volume. In Figure 23, we show the cost of ECO and NPS as a function of a percentage
of more data volume purchased than the basic monthly data volume. We see that if we purchase
14% more of the basic data volume, we can get the lowest cost. Thus, the cost can be reduced by
purchasing more data volume than the basic data volume.

9 A CASE STUDY

We are developing a SAMS for a centralized air-conditioning system. (Figure 24 is an illustration
of a centralized air-conditioning system with water tower, chillers to cool down the water, pumps
to push water circulation, an air handling unit (AHU) to use cold water to cool down the air, and
fans to push air circulation. Finally, cold air will air-condition the offices and the temperature is
controlled by the amount/speed of cold air allowed into an office.)

We compute the performance of a chiller by COP (Equation (4)) and the performance of a pump
by Water Transfer Coefficient (WTC, Equation (5)) [23, 33].

COP =
4.181 × Fr × (Tr −Ts)

Wc
. (4)

WTC =
Q

Wp
. (5)

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

29:26 C. Hu et al.

Table 3. The Parameters for Computing COP and WTC

Para. Description
Fr Condenser flow rate (m3/h)
Tr The returning chilled water temperature (◦C)
Ts The supplying chilled water temperature (◦C)
Wc Chiller power input (kWh)
Q Heat transfer to circulating water (k J)
Wp Pump power input (kWh)

Fig. 25. SAMS supported by the sTube+ architecture.

We develop the sensing module on Raspberry Pi to collect the raw data in Table 3. Chillers and
pumps have standard Application Programming Interface (API) to output data from their embed-
ded sensors. Using a chiller as an example, a chiller controller uses a ModBus RTU protocol with
an RS-485 interface. Modbus RTU protocol is a query-response protocol. We implement an ap-
plication in Raspberry Pi using the standard library libmodbus [31] to query the chiller through
Modbus RTU protocol. The communication between USB port of Raspberry Pi and RS-485 need a
USB/RS485 Converter module as the electrical level difference. Our hardware is shown in Figure 25.

We deployed one N-node on a chiller and 12 S-nodes, four chillers, and eight pumps (Figure 25).
All our nodes are powered by AC and we ran our system for 12 consecutive days. We rent a server
deployed in Cloud Anonymity. Our system monitored the raw data successfully. We show the raw
data and COPs of the chillers in Figure 26, and the raw data and WTCs of the pumps in Figure 27.4

For better illustration, we only show chillers 1 and 2 and pumps 1 and 2.
Our cloud monitored the data consumed by each S-node (Figure 28). Our system can lead to a

great cost reduction. In our case, we employ the PAYG-E pricing model provided by China Tele-
Com. The total data traffic of four chillers and eight pumps in 10 days was 13.76MB. The monthly
communication cost of our system is $2. If adopting the ECO method, the cost is $12 which is six
times more thanour method. Note that $2 is also the optimal cost we can get under the real pricing
model.

4One-time COP/WTC is not used in practice as it is not reliable. The COP/WTC in Figures 26 and 27 is an average of 10

consecutive samples.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

sTube+: An IoT Communication Sharing Architecture 29:27

Fig. 26. The raw data and COP of chiller 1 and

chiller 2.
Fig. 27. The raw data and WTC of pump 1 and

pump 2.

Fig. 28. The data usage of the four chillers and eight pumps.

10 CONCLUSION AND FUTURE WORK

One core value of the IoT is the data of the things (i.e., IoT devices). Yet, transmitting the data to
the cloud is still not pervasively achievable. The industry is actively developing various commu-
nication choices to support the diverse requirements of IoT data transmission. We demonstrated
in this article that the number of IoT communication choices may not easily catch up the require-
ments. We carefully analyzed example application scenarios. We proposed a solution of sTube+
on IoT communication sharing. The design of sTube+ includes a layered data delivery architec-
ture, algorithms for cost optimization and incremental development of devices, and a prototype
of a fully functioning system. We further develop a case study of chiller and pump maintenance,
where sTube+ acts as the underlying architecture.

There are many future works. With the sTube+ data delivery architecture, there is a large space
for research in price optimization for according to different pricing models and application sce-
narios. We also plan to develop a comprehensive SAMS for the energy systems of buildings.

REFERENCES

[1] [n.d.]. Retrieved from https://www.singtel.com/personal/i/phones-plans/mobile/postpaid/combo/mobileshare-

supplementary-plan.

[2] [n.d.]. Retrieved from https://www.o2.co.uk/sharer-plans.

[3] [n.d.]. AT&T Continues to Offer LTE-Cat 1 and LTE-Cat 4 Modules to Fit a Variety of Needs. Retrieved from

https://iotdevices.att.com/uploaded_docs/lte-cat_1_and_lte-cat_4_modules_2_20170818141220039.pdf.

[4] [n.d.]. China Telecom Launches NB-IoT Service Package. Retrieved from http://en.c114.com.cn/2502/a1015477.html.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

https://www.singtel.com/personal/i/phones-plans/mobile/postpaid/combo/mobileshare-supplementary-plan
https://www.singtel.com/personal/i/phones-plans/mobile/postpaid/combo/mobileshare-supplementary-plan
https://www.o2.co.uk/sharer-plans
https://iotdevices.att.com/uploaded_docs/lte-cat_1_and_lte-cat_4_modules_2_20170818141220039.pdf
http://en.c114.com.cn/2502/a1015477.html

29:28 C. Hu et al.

[5] [n.d.]. Deutsche Telekom launches first NB-IoT packages in Germany. Retrieved from https://www.mobileeurope.co.

uk/press-wire/deutsche-telekom-launches-first-nb-iot-packages-in-germany.

[6] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. 2002. Wireless sensor networks: A sur-

vey. Computer Networks 38, 4 (2002), 393–422.

[7] Noga Alon, Baruch Awerbuch, and Yossi Azar. 2003. The online set cover problem. In Proc. ACM STOC’03.

[8] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. 2009. The online set cover problem.

SIAM J. Comput. 39, 2 (2009), 361–370.

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks 54, 15

(2010), 2787–2805.

[10] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the Internet of

Things. In Proc. ACM MCC’12. Helsinki, Finland.

[11] Mung Chiang and Tao Zhang. 2016. Fog and IoT: An overview of research opportunities. IEEE Internet of Things

Journal 6, 3 (2016), 854–864.

[12] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler. 2010. sMAP: A simple mea-

surement and actuation profile for physical information. In Proc. ACM SenSys’10.

[13] Nofirman Firdaus, Bambang Teguh Prasetyo, and Thomas Luciana. 2016. Chiller: Performance deterioration and

maintenance. Energy Engineering 113, 4 (2016), 55–80.

[14] Jingkun Gao, Joern Ploennigs, and Mario Berges. 2015. A data-driven meta-data inference framework for building

automation systems. In Proc. ACM Buildsys’15.

[15] Cesar A. Garc, Pedro Merino, et al. 2016. 3GPP standards to deliver LTE connectivity for IoT. In Proc. IEEE IoTDI’16.

[16] Chuang Hu, Wei Bao, Dan Wang, Yi Qian, Muqiao Zheng, and Shi Wang. 2017. sTube+: An IoT Communication Sharing

Architecture for Smart After-sales Maintenance in Buildings. Technical Report. https://goo.gl/hXEimZ.

[17] Jianwei Huang and Lin Gao. 2013. Wireless network pricing. Synthesis Lectures on Communication Networks 6, 2

(2013), 1–176.

[18] Jing Jiang and Yi Qian. 2016. Distributed communication architecture for smart grid applications. IEEE Communica-

tions Magazine 54, 12 (2016), 60–67.

[19] Aqeel H. Kazmi, Michael J. O’grady, Declan T. Delaney, Antonio G. Ruzzelli, and Gregory M. P. O’hare. 2014. A review

of wireless-sensor-network-enabled building energy management systems. ACM Transactions on Sensor Networks

(TOSN) 10, 4 (2014), 66.

[20] Joseph H. K. Lai, Francis W. H. Yik, and Aggie K. P. Chan. 2009. Maintenance cost of chiller plants in hong kong.

Building Services Engineering Research and Technology 30, 1 (2009), 65–78.

[21] Steven Latre, Philip Leroux, Tanguy Coenen, Bart Braem, Pieter Ballon, and Piet Demeester. 2016. City of things: An

integrated and multi-technology testbed for IoT smart city experiments. In Proc. IEEE ISC2’16.

[22] Jay Lee, Chao Jin, and Zongchang Liu. 2017. Predictive big data analytics and cyber physical systems for TES systems.

In Advances in Through-life Engineering Services. Springer, 97–112.

[23] Mehdi Mahdavikhah and Hamid Niazmand. 2013. Effects of plate finned heat exchanger parameters on the adsorption

chiller performance. Applied Thermal Engineering 50, 1 (2013), 939–949.

[24] Ghasem Naddafzadeh-Shirazi, Lutz Lampe, Gustav Vos, and Steve Bennett. 2015. Coverage enhancement techniques

for machine-to-machine communications over LTE. IEEE Communications Magazine 53, 7 (2015), 192–200.

[25] Antonio L. Maia Neto, Artur L. F. Souza, Italo Cunha, et al. 2016. AoT: Authentication and access control for the entire

IoT device life-cycle. In Proc. ACM Senys’16.

[26] Dusit Niyato, Xiao Lu, Ping Wang, Dong In Kim, and Zhu Han. 2016. Economics of Internet of Things: An information

market approach. IEEE Wireless Communications 23, 4 (2016), 136–145.

[27] Tie Qiu, Ning Chen, Keqiu Li, Daji Qiao, and Zhangjie Fu. 2017. Heterogeneous ad hoc networks: Architectures,

advances and challenges. Ad Hoc Networks 55 (2017), 143–152.

[28] J. S. Roessler. 2015. LTE-Advanced (3GPP Rel. 12) Technology Introduction. Retrieved from https://cdn.rohde-

schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.

pdf.

[29] Petr Slavík. 1996. A tight analysis of the greedy algorithm for set cover. In Proc. ACM STOC’96.

[30] Anna Maria Vegni, Valeria Loscr, Alessandro Neri, and Marco Leo. 2016. A Bayesian packet sharing approach for

noisy IoT scenarios. In Proc. IEEE IoTDI’16.

[31] Artemios G. Voyiatzis, Konstantinos Katsigiannis, and Stavros Koubias. 2015. A modbus/TCP fuzzer for testing in-

ternetworked industrial systems. In Proc. IEEE ETFA’15.

[32] Thomas Watteyne, Kris Pister, Dominique Barthel, Mischa Dohler, and Isabelle Auge-Blum. 2009. Implementation of

gradient routing in wireless sensor networks. In Proc. IEEE GLOBECOM’09. Honolulu, Hawaii.

[33] Yang Yao, Yiqiang Jiang, Shiming Deng, and Zuiliang Ma. 2004. A study on the performance of the airside heat

exchanger under frosting in an air source heat pump water heater/chiller unit. International Journal of Heat and Mass

Transfer 47, 17 (2004), 3745–3756.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

https://www.mobileeurope.co.uk/press-wire/deutsche-telekom-launches-first-nb-iot-packages-in-germany
https://www.mobileeurope.co.uk/press-wire/deutsche-telekom-launches-first-nb-iot-packages-in-germany
https://goo.gl/hXEimZ
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.pdf
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.pdf
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.pdf

sTube+: An IoT Communication Sharing Architecture 29:29

[34] Neal E. Young. 2008. Greedy set-cover algorithms. In Encyclopedia of Algorithms. Springer, 379–381.

[35] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal Jackson, and Prabal Dutta. 2015. The

Internet of Things has a gateway problem. In Proc. ACM HotMobile’15.

[36] Zimu Zheng, Dan Wang, Jian Pei, Yi Yuan, Cheng Fan, and Fu Xiao. 2016. Urban traffic prediction through the second

use of inexpensive big data from buildings. In Proc. ACM CIKM’16.

Received January 2018; revised May 2018; accepted August 2018

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 29. Publication date: November 2018.

